Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{align*} & 4+3=7 \\ & 10=6+4 \tag{5}\\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract. } \end{array} \end{align*}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.		$\begin{aligned} 4^{4}+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Column method- no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$
Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ $\begin{array}{r}536 \\ +85 \\ \text { As the children } \\ \text { and different. }\end{array}$ $\frac{621}{11}$ Money can be used here.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals money and decimal place value counters can be used to support learning

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

18-3=15
\]

$$
8-2=6
$$ \\

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. |
| :--- |
| 13 -4 |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help. \\

\hline
\end{tabular}

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part-Part-Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part-whole model.
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next $10 ?$ How many do we have left to take off?
Column method without regrouping		Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$47-24=23$ This will lead to a clear written column subtraction.

Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters \square Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Extend to hundreds and thousands. Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Repeated addition		There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

\begin{tabular}{|c|c|c|c|}

\hline Arrays- showing commutative multiplication \& Create arrays using counters/ cubes to show multiplication sentences. \& \& \begin{tabular}{l}
Use an array to write multiplication sentences and reinforce repeated addition. \\
00000
0000

$$
\begin{aligned}
& 5+5+5=15 \\
& 3+3+3+3+3=15 \\
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned}
$$

\end{tabular} \\

\hline
\end{tabular}

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. $\begin{aligned} 32 & \\ \times 24 & \\ \cline { 1 - 1 } 8 & (4 \times 2) \\ 120 & (4 \times 30) \\ 40 & (20 \times 2) \\ \frac{600}{768} & (20 \times 30) \end{aligned}$ This moves to the more compact method.

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{\|rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .
Short division		Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder.

Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division

This appendix sets out some examples of formal written methods for all four operations to illustrate the range of methods that could be taught. It is not intended to be an exhaustive list, nor is it intended to show progression in formal written methods. For example, the exact position of intermediate calculations (superscript and subscript digits) will vary depending on the method and format used.

For multiplication, some pupils may include an addition symbol when adding partial products. For division, some pupils may include a subtraction symbol when subtracting multiples of the divisor.

Addition and subtraction

Answer: 1431

874 - 523 becomes

$8 \quad 7 \quad 4$
$-\quad 5 \quad 2 \quad 3$
$3 \quad 5 \quad 1$

932-457 becomes

$$
\begin{array}{r}
93^{1} 2 \\
-\quad 47 \\
\hline 475 \\
\hline \text { Answer: } 475
\end{array}
$$

$932-457$ becomes

$$
9^{1}{ }_{3}^{1} 2
$$

$$
-457
$$

$$
\begin{gathered}
56 \\
\hline 475 \\
\hline
\end{gathered}
$$

Answer: 475

Short multiplication

$$
\begin{array}{r}
24 \\
\times \quad 6 \\
\hline 144 \\
\hline 2
\end{array}
$$

Answer: 144
342×7 becomes

$$
\begin{array}{r}
342 \\
\times \quad 3 \\
\hline 2394 \\
\hline 21
\end{array}
$$

Answer: 2394

$$
\begin{aligned}
& 2741 \times 6 \text { becomes } \\
& \begin{array}{llll}
2 & 7 & 4 & 1
\end{array} \\
& \begin{array}{ccccc}
\times & & & & 6 \\
\hline 1 & 6 & 4 & 4 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Answer: 16446

Long multiplication

Answer: 384

Answer: 3224
124×26 becomes
$\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}$
$\begin{array}{r}124 \\ \times \quad 26 \\ \hline 744\end{array}$

2	4	8	0
3	2	2	4

Answer: 3224

Short division

$98 \div 7$ becomes

Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Long division
$432 \div 15$ becomes

$$
\begin{array}{lr|rrr}
& & 2 & 8 & \mathrm{r} 12 \\
& 5 & 3 & 2 \\
3 & 0 & 0 \\
& 1 & 3 & 2 \\
& 1 & 2 & 0 \\
\hline & & 1 & 2
\end{array}
$$

$$
432 \div 15 \text { becomes }
$$

$$
\frac{12}{15}=\frac{4}{5}
$$

$$
\text { Answer: } 28 \frac{4}{5}
$$

$$
\begin{aligned}
& \\
&
\end{aligned}
$$

$432 \div 15$ becomes

$$
\begin{array}{llllll}
& & & 2 & 8 & 8 \\
1 & 5 & 4 & 3 & 2 & 0 \\
& & 3 & 0 & \downarrow & \\
& & 1 & 3 & 2 & \\
& & 1 & 2 & 0 & \downarrow \\
& & & 1 & 2 & 0 \\
& & & 1 & 2 & 0 \\
\hline & & & & 0
\end{array}
$$

Answer: 28-8

