Othrive co-operative learning trust

This policy was produced between a working party of Maths Subject Leaders within the Thrive group of schools in June 2019. It is a working document and will be revised and amended as necessary.
Some images have been copied from NCETM materials.

The objective for Early Years is to ensure that all children develop firm mathematical foundations in a way that is engaging, and appropriate for their age. Calculation guidance for the EYFS to be developed with Thrive Maths leads and Early Years practitioners.

Mathematics: Number

Key Vocabulary: 'one', 'two', 'three', 'lots', 'fewer', 'hundreds', 'how many?' and 'count' in a variety of situations.
Foundation Stage 1
Before calculations can be introduced, children need to have a secure knowledge of number. In FS1, children are introduced to the concept of counting, number order and number recognition through practical activities and games. This is taught through child initiated games such as hide and seek and I spy. Children also learn how to count $1-1$ (pointing to each object as they count) and that anything can be counted, for example, claps, steps and jumps. This is reinforced by opportunities provided in the outdoor area for the children to count e.g. counting building blocks, twigs etc. This is heavily supported by Master the Curriculum

Mathematics: Number

Key Vocabulary: 'more', 'less', 'equals', 'lots', 'add', 'subtract', 'how many?' and 'count' in a variety of situations.
Foundation Stage 2
Before calculations can be introduced, children in FS2 need to build on concepts taught in FS1 by working through the number objectives in the $40-60$ month band of Development Matters. Using explicit mathematical language, it is important that practitioners model precise and correct mathematical language. There are suggestions of key sentences in the Number Blocks NCETM materials to use and have repeated by the children; they provide a language structure to connect each mathematical idea to different contexts. The Number Blocks sequence of lessons are available for guidance, along with practitioner notes, helping children to bring the numbers and ideas to life in the world around them. It is vital to ensure that children have a secure understanding of the 'oneness of one' etc, for numbers within 10 before moving on to simple calculations; one more/one less and addition and subtraction of single digit numbers, not crossing 10.

EYFS Maths obiectives and Early learning Goals

Maths objectives derived from Development matters:

Number:

Count objects, actions and sounds.

- Link the number symbol (numeral) with its cardinal number value
- Count beyond ten.
- Compare numbers
- Understand the 'one more than/one less than' relationship between consecutive numbers
- Understand the 'one more than/one less than' relationship between consecutive numbers
- Explore the composition of numbers to 10 • Automatically recall number bonds for numbers $0-5$ and some to 10
- Verbally count beyond 20, recognising the pattern of the counting system
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally
- Have a deep understanding of number to 10, including the composition of each number • Subitise (recognise quantities without counting) up to 5
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.

Shape:

-Select, rotate and manipulate shapes to develop spatial reasoning skills

- Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can
- Continue, copy and create repeating patterns

Number ELG

Children at the expected level of development will:

- Have a deep understanding of number to 10, including the composition of each number
- Subitise (recognise quantities without counting) up to 5/
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

Numerical Patterns ELG

Children at the expected level of development will:

- Verbally count beyond 20, recognising the pattern of the counting system
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally

Addition

Key Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as', addend

Year 1

| Objective and
 Strategies | Concrete | Pictorial |
| :--- | :--- | :--- | :--- |
| Comparing objects,
 groups of objects
 (Length, weight,
 mass, heavier,
 lighter, same, equal) | People's height, distance, mass.
 Comparing multiple objects.
 Use of concrete materials e.g. compare
 bears, jewels, cubes etc. to create
 groups of different sizes to compare | Present the children with a range of pictorial
 representations. |

| Finding one more, |
| :--- | :--- |
| finding one less | | Children to use Numicon, multilink, |
| :--- |
| counters and tens frames etc. to |
| explore. |

Starting at the larger number and counting on (augmentation)	Start with the larger number on the bead string and then count on the smaller number 1 by 1 to find the answer. Use cubes and Numicon too.	Starting at the larger number on a number line or hundred square and count on in ones or one jump to find the answer. $12+5=$ Bar models could be used to encourage the children to count on, rather than count all.	$5+12=17$ 'Place the largest number in your head and count on the smaller number to find your answer.' What is 5 more than 12 ? What is the sum of 12 and 5 ? What is the total of 5 and 12 ?
Regrouping to make 10. *Ensure that ten frames have been used previously to explore and represent number bonds to 10 This is an essential skill for column addition later.	$\begin{aligned} & 9+3=12 \\ & 6+5=11 \end{aligned}$	Use pictures or a number line. Regroup or partition the smaller number to make 10. $3+9=$	$7+4=11$ 'If I am at seven, how many more do I need to make 10 ? How many more do I add on now?' Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Year 2
Adding three single

digits | $2+3+8=13$ |
| :--- |
| Nut 8 and 2 together to make 10. Add |
| should be the main |
| strategy. |

Adding a 2 digit and multiple of 10	Numicon and base ten used to explore. $24+10=$ $25+10=$ Explore that the ones digit does not change.	$24+10=$ $\begin{aligned} & 20+10=30 \\ & 30+4=34 \end{aligned}$	$\begin{aligned} & 24+10= \\ & 20+10+4=34 \\ & \\ & \\ & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \\ & \square+30=67 \end{aligned}$

Partitioning and recombining to add two two-digit numbers. (Begin with examples where the ones do not cross the boundary)		$24+13=$ $28+39=$ This could then be broken down to add multiples of 10 first and then the ones. $50+10+7=67$ $50+17=67$ Use jotting alongside apparatus e.g. Numicon, base 10	$\begin{aligned} 24= & 20+4 \\ 13= & 10+3 \\ & 30+7=37 \end{aligned}$ Ongoing dialogue which is not necessary to record. $24+38=$ \square $29+$ \square $=51$ $38+24=$ \square \square $+22=51$

Year 3

Mental addition of 3 digit numbers and multiples of 1, 10 and 100	Use Base 10 and place value charts to represent the additions. $242+100=$	Use place value charts, base ten, counters and number lines to represent problems pictorially. $629+40=$	$\begin{aligned} & 213+4=217 \\ & 40+213=253 \\ & 215+\quad=265 \\ & +300=515 \end{aligned}$

		Children to be encouraged to use own jottings to work out the answer.	
Column method - no regrouping Non-statutory Y2 Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.	$24+15=$ Add together the ones first then add the tens. Use the Base ten blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters or Base ten e.g. lines of tens and dots or crosses for ones. T 0	Calculations: $\begin{aligned} & 21+34= 21 \\ &+34 \\ & \hline \end{aligned}$
			Calculate the sum of twenty-one and thirty-four.
		$21+34=55$ Ensure that different representations and layouts are used alongside column method, i.e. part part whole models.	$\begin{array}{r} 223 \\ +114 \end{array}$
		$123+321=$	337
	\odot \odot \odot 0000 0000 44		In year 3, there are 21 children
	- 0000015		and in year 4, there are 34 children. How many children are there in total?

	\cdots \cdots $\overline{y y}$ $\mathrm{E}_{\mathrm{E}} \mathrm{E}$ E_{E} 		
Column method regrouping	Make both numbers on a place value grid. Add up the ones and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base ten to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. $146+527=$	$\begin{aligned} & \frac{585}{} \frac{+85}{\frac{621}{11}} \\ & +263 \\ & +257 \\ & \hline 520 \\ & \hline 11 \end{aligned}$

Mental addition build upon year 3 mental addition but with increasingly larger numbers	Use Base 10 and place value charts to represent the additions. $4312+420=$	Children to use own jottings to support, i.e. place value charts with counters. $7065+2000=$	$\begin{aligned} 4312 & +420= \\ 7065 & +2000= \\ & +3000=5286 \end{aligned}$ $7135+700=$ - definitaly changing $7135+70=$... potentially also changing
Column Addition	Children to use Base ten, place value charts and counters (see Year 3)	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding (see Year 3).	$\begin{array}{r} 3, \square_{4} \square \\ +\square_{5,729} \square_{5} \square_{5} \end{array}$

Year 5

Add and subtract numbers mentally with increasingly large numbers	Use Base 10 and place value charts to represent the additions. $52321+1201=$	After practically using Base ten blocks and place value counters, represent pictorially and encourage the children to draw their own representations. $386472+40000=$$386472+40000=$hundred thousands ten thousands thousands hundreds tens ones \square 6 4 7 2	

Year 6

Subtraction

Key Vocabulary: take away, less than, the difference, subtract, minus, fewer, decrease, subtrahend, minuend, wholes and parts

Year 1

Objective and Strategies	Concrete	Pictorial	Abstract
Finding one more, finding one less NB: this is the same as in addition section above it is just here as a reminder.	Children to use Numicon, multilink, counters and tens frames etc. to explore. Multilink staircase in 2 different colours to highlight each number is one more than the previous number.	Children to use a range of pictorial representations to explore further. These could be given to the children or drawn by the children to support their thinking. 'Four is one less than five.' ' 'Five is one more than four.' Base-ten number boards: 'Two is one less than three' - 'Three is one more than two.'	Now remove the pictorial contexts and present the children with different expressions to complete, i.e. one more/one less sentences. 1 more than 3 is 1 less than 2 is 1 more than \square is 1 1 less than \square is 1

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Taking away ones \\
Physically taking away and removing objects from a whole
\end{tabular} \& \begin{tabular}{l}
Use physical objects e.g. ten frames, Numicon, cubes and other items such as beanbags could be used.

$$
6-2=4
$$

Subtraction as 'chopping off'
\end{tabular} \& Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.

\[
15-3=12

\] \& | $18-3=$ |
| :--- |
| Minuend - subtrahend = Difference $=18-3$ |

\hline
\end{tabular}

Year 2

Same difference		Pictorially with counters, number lines and bar models	$\begin{aligned} & 4-1=3 \\ & 5-2=3 \\ & 6-3=3 \\ & 7-4=3 \end{aligned}$ Children to explore why They have the same difference. $\begin{aligned} & 9-6= \\ & 8-5= \\ & 7-4= \end{aligned}$
2d-1d	Explore that $9-3=6$ so $29-3=26$ etc.	$19-3=16$	$\begin{aligned} & \hline 9-3=6 \\ & 19-6=13 \\ & 29-6=23 \text { etc. } \end{aligned}$
2d-multiple of ten	$32-10=22$ Children use dienes, PV counters or Numicon. They remove the correct number of tens	Children draw rods and cubes and cross off multiples of ten. $44-20=$	$\begin{aligned} & 64-10=\square \\ & 64-20=\square \\ & 64-30=\square \\ & 64-\square=24 \\ & \square-50=14 \end{aligned}$

Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the language 'exchange and regroup'. Exchange 1 ten for 10 ones, Now regroup the 10 ones and place in the ones column.	$20-4=16$	$\begin{array}{r} 20-4=16 \\ \square-4=26 \\ 40-\square=36 \end{array}$
Partition to subtract without regrouping	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children draw representations of Dienes and cross off.	$43-21=22$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Make ten strategy \\
(subtract through ten to make a ten and subtract from ten) \\
See NCETM PD \\
Materials 1.11 TP 6
\end{tabular} \& \begin{tabular}{l}
\[
15-9=
\] \\
Make 15 on the ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9 . \\
\begin{tabular}{c}
\(15-9\) \\
5 \\
\hline 5
\end{tabular}

$$
\begin{aligned}
& 15-5=10 \\
& 10-4=6 \\
& 15-9=6
\end{aligned}
$$

Also show take from the ten strategy.

$$
15-9=10-9=1+5=6
$$

 \&

$$
15-9=
$$

Jump back 5 first, then another 4. Use ten as the stopping point.

 \&

$$
16-9=
$$

How many do we take off first to get to 10 ? How many left to take off?
\end{tabular}

\hline
\end{tabular}

Year 3

Year 4-6

Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As above	Children to draw PV counters (including decimal PV counters) and show their exchange-see Y3	$\begin{array}{r} { }^{2} 8^{\circ} \times 10^{18}{ }^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders. $\begin{array}{r} 67^{10} x^{1} 69 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \end{array}$
Y5 mental			
Year 6—Subtract with increasingly large and more complex numbers and decimal values.	As above	As above	
Y6 mental			

Multiplication

Key Vocabulary: double, times, multiple, groups of, lots of, equal groups, the product of, factor, product, multiplied by, times by

Year 1

| Objective and
 Strategies | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Doubling
 Double numbers to
 ten in Y 1 | Use practical activities to show how to
 double a number. | Draw pic tures to show how to double a number.
 Double 4 is 8 | Double 4 is 8.
 4 and another 4 is 8 |

| Counting in multiples |
| :--- | :--- |
| of 2 |\quad| Count in multiples using real-life objects |
| :--- |
| and contexts supported by concrete |
| objects in equal groups. | | Use a number line, hundred square or pictures to |
| :--- |
| continue support in counting in multiples. |

Counting in multiples of 10	 		10, 20, 30, 40, 50
Counting in multiples of 5			5,10, 15, 20, 25,30

Year 2

Double a 2-digit number	Model doubling using Dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Equal/non-equal groups	Use real life objects and contexts to examine equal and non-equal groups. These are non-equal groups.	Children make/match/draw representations of real life problems to show equal groups and find the total. There are 4 equal groups. There are 2 in each group. There are 8 altogether.	If there are five groups with three in each group. Are they equal groups? There are 2 bags with 4 sweets in and 1 bag with 6 sweets in. Are these equal groups?

	These are equal groups. There are 3 equal groups. There are 5 in each group. There are five equal groups. Each group has 3 cakes.		
Understand and use arrays	Use objects laid out in arrays to find the answers to 2 lots of 5,3 lots of 2 etc.	Make and draw representations of arrays to show understanding	
Repeated addition	Use objects and real life contexts. There are 5 groups of 2. There are 10 socks altogether. There are 3 groups of 3 .	Make and draw representations to show repeated addition. There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures. $\begin{aligned} & 5+5+5+5+5+5+5+5 \\ & =40 \end{aligned}$

 There are 9 altogether.

Understand the 2,5
and 10 times table

Year 3

Year 4-6

Division

Key Vocabulary: share, group, divide, divided by, half, dividend, divisor, quotient

Year 1

Objective and Strategies	Concrete	Pictorial	Abstract
Division as sharing.	Sharing using a range of objects. I have 10 cubes, can you share	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
	groups?		3 3 3
			Children should be encouraged to use their times tables facts.
		Begin to use mathematical pictures.	

Division within arrays

	share the ones equally among the groups. We look how much is in 1 group so the answer is 14 .		
Long Division	$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Children to represent the counters, pictorially and record the subtractions beneath.	

